Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao.

Identifieur interne : 000628 ( Main/Exploration ); précédent : 000627; suivant : 000629

Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao.

Auteurs : Andrew S. Fister [États-Unis] ; Lena Landherr [États-Unis] ; Siela N. Maximova [États-Unis] ; Mark J. Guiltinan [États-Unis]

Source :

RBID : pubmed:29552023

Abstract

Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.

DOI: 10.3389/fpls.2018.00268
PubMed: 29552023
PubMed Central: PMC5841092


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient Expression of CRISPR/Cas9 Machinery Targeting
<i>TcNPR3</i>
Enhances Defense Response in
<i>Theobroma cacao</i>
.</title>
<author>
<name sortKey="Fister, Andrew S" sort="Fister, Andrew S" uniqKey="Fister A" first="Andrew S" last="Fister">Andrew S. Fister</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Landherr, Lena" sort="Landherr, Lena" uniqKey="Landherr L" first="Lena" last="Landherr">Lena Landherr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29552023</idno>
<idno type="pmid">29552023</idno>
<idno type="doi">10.3389/fpls.2018.00268</idno>
<idno type="pmc">PMC5841092</idno>
<idno type="wicri:Area/Main/Corpus">000800</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000800</idno>
<idno type="wicri:Area/Main/Curation">000800</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000800</idno>
<idno type="wicri:Area/Main/Exploration">000800</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient Expression of CRISPR/Cas9 Machinery Targeting
<i>TcNPR3</i>
Enhances Defense Response in
<i>Theobroma cacao</i>
.</title>
<author>
<name sortKey="Fister, Andrew S" sort="Fister, Andrew S" uniqKey="Fister A" first="Andrew S" last="Fister">Andrew S. Fister</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Landherr, Lena" sort="Landherr, Lena" uniqKey="Landherr L" first="Lena" last="Landherr">Lena Landherr</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Science, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Theobroma cacao</i>
, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao
<i>Non-Expressor of Pathogenesis-Related 3 (TcNPR3)</i>
gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA)
<i>in vitro</i>
, we used
<i>Agrobacterium</i>
to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of
<i>TcNPR3</i>
copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen
<i>Phytophthora tropicalis</i>
and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via
<i>Agrobacterium</i>
-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29552023</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient Expression of CRISPR/Cas9 Machinery Targeting
<i>TcNPR3</i>
Enhances Defense Response in
<i>Theobroma cacao</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>268</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00268</ELocationID>
<Abstract>
<AbstractText>
<i>Theobroma cacao</i>
, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao
<i>Non-Expressor of Pathogenesis-Related 3 (TcNPR3)</i>
gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA)
<i>in vitro</i>
, we used
<i>Agrobacterium</i>
to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of
<i>TcNPR3</i>
copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen
<i>Phytophthora tropicalis</i>
and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via
<i>Agrobacterium</i>
-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fister</LastName>
<ForeName>Andrew S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landherr</LastName>
<ForeName>Lena</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maximova</LastName>
<ForeName>Siela N</ForeName>
<Initials>SN</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guiltinan</LastName>
<ForeName>Mark J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Science, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>03</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CRISPR/Cas9</Keyword>
<Keyword MajorTopicYN="N">NPR3</Keyword>
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">Theobroma cacao</Keyword>
<Keyword MajorTopicYN="N">defense response</Keyword>
<Keyword MajorTopicYN="N">gene editing</Keyword>
<Keyword MajorTopicYN="N">transient transformation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29552023</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00268</ArticleId>
<ArticleId IdType="pmc">PMC5841092</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2016 May 17;17 :363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1292-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Genome. 2016 Nov;9(3):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27902801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Aug;31(8):686-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23929338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioengineered. 2017 May 4;8(3):274-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28581909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Jun 25;18(12 ):3451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2362802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Dec;15(12 ):1509-1519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28371200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2016 Mar 11;12:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;486(7402):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2017 Sep 14;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28905515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2014 May 02;7(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Dec 06;13:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Sep;32(9):947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25038773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Mar;36(3):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27995308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2015 Mar 12;15:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25879861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Apr 26;11(4):e0154027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27116122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Aug 25;7:12617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27558837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 10;6:235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25914712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jul 20;5:12217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26193631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:485-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28226238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Nov;6(6):1975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23956122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 10;88(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2017 Jan;36(1):117-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27699473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2013 Oct;23(10):1233-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23999856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2016;90(4):231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26617267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3429-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 07;9(4):e93806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 May 07;30(5):390-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22565958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Jan;17 (1):127-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26507366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 2017;61(2):138-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28523919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:64-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24840293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2015 Jan;16(1):27-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):827-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23873081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14 (2):435-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26817702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Feb;16(2):415-427</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28640983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Oct;66(20):6245-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26163705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Sep;17 (7):1140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26808139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):802-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22986789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 18;8:1780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 May 29;5:10342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26022141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3570-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 14;10(12):e0144591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26657719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2016 Jan 10;217:90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Sep;224(4):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16362326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Jun;21(9):872-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Feb;89(3):636-648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27747971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 May 29;14(5):R51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Nov 15;10:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2014 Dec;32(12):1262-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25184501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Nov;240:130-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26475194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Mar;14 (3):875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26214158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Aug 17;337(6096):816-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Fister, Andrew S" sort="Fister, Andrew S" uniqKey="Fister A" first="Andrew S" last="Fister">Andrew S. Fister</name>
</region>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<name sortKey="Landherr, Lena" sort="Landherr, Lena" uniqKey="Landherr L" first="Lena" last="Landherr">Lena Landherr</name>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29552023
   |texte=   Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29552023" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024